函数f(x)是定义在(0,+∞)上的函数,f(2)=0;x>1时,f(x)
人气:271 ℃ 时间:2020-05-07 05:41:57
解答
1、f(x)在定义域上是减函数
证明:已知f(xy)=f(x)+f(y)-1,
令y为比1大但是无限接近于1的常数a
那么ax>x ,f(a)1时,f(x)2
从而只要找到交点A的横坐标a,0
推荐
- 设f(x)是定义在(0,+∞)上的函数,且满足条件:⒈f(xy)=f(x)+f(y);⒉f(2)=1;⒊在(0,+∞)上是增函数.如...
- 定义在(-1,1)上的函数f(x)满足f(x)-f(y)=f[(x-y)/(1-xy)],当x属于(-1,0)时,有f(x)>0,
- 已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(4)=1,
- 已知函数f(x)的定义域是(0,+∞)且满足f(xy)=f(x)+f(y),f(1/2)=1,如果对于0<x<y,都有f(x)>f(y).(1)求f(1),f(2);(2)解不等式f(-x)+f(3-x)≥-2.
- 定义在非零实数集上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,+∞)上的递增函数 (1)求f(1),f(-1)的值; (2)求证:f(-x)=f(x); (3)解关于x的不等式:f(2)+f(
- 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A
- 人在细杆上走的时候,为什么要抬起手臂来保持平衡?
- 木兰诗里的“木兰不用尚书郎”的“尚书郎”相当于现在的什么官职
猜你喜欢