已知关于x的一元二次方程x²+(m+3)X+m+1=0.⑴求证:无论m去何值,原方程总有两个
已知关于x的一元二次方程x²+(m+3)X+m+1=0.⑴求证:无论m去何值,原方程总有两个不相等的实数根;⑵若x¹,x²是原方程的两根,且|x¹-x²|=2√2,求m的值和此时方程的两根.
人气:130 ℃ 时间:2019-10-19 18:40:33
解答
(1)证明:因为判别式=(m+3)^2-4(m+1)=m^2+2m+5=(m+1)^2+4>0恒成立,所以:无论m取何值,原方程总有两个不相等的实数根;⑵因为x¹,x²是原方程的两根,所以:x¹+x²=-(m+3),x¹*x²=m+1,由|...^ ����ʲô
推荐
猜你喜欢
- Lucy is ——— of the two.
- 5x+{120-x}*3=120 怎么解
- 我国古代数学家利用面积关系证明勾股定理的一幅图,你能把证明过程写出来吗
- 一根绳子,用去4分之1,又接上15厘米,这时比原来短了6分之1 ,这根绳子原来长()米.
- 试确定实数a的范围,使方程x²-ax+a²-4=0的正根有且仅有一个?
- quarter什麽意思
- who's who,it is?are you?i want to go home
- 已知直线过点(1,4),且在两轴上的截距的积等于18,求该直线的方程,用两点式表示