过点p(2,1)作直线L分别交X轴、Y轴的正半轴于A,B两点,求三角形AOB的面积最小直线L的方程
人气:261 ℃ 时间:2020-03-29 06:59:15
解答
设直线L的方程是:y-1=k(x-2) (k0
则S△AOB≥(1/2)[2√(-4k)(-1/k)+4]
=(1/2)×(2×2+4)
=4
当且仅当-4k=-1/k 即k=-1/2时,等号成立
∴当k=-1/2时,三角形AOB的面积最小
此时直线L的方为:y=(-1/2)x+2
推荐
- 过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
- 过点p(1,2)作直线l,交x正半轴,y的正半轴于A,B两点,求使三角形AOB面积取得最小值时直线l的方程
- 过点(1,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△ABC的面积最小时,求直线l的方程.
- 过点p(2,1)的直线L分别叫x轴,y轴的正半轴于A,B两点,求三角形AOB的面积的最大值时直线L的方程
- 过点P(2,1)作直线L,分别交X轴,Y正半轴于于A、B两点,当三角形AOB面积最小时,求直线L的方程?
- ()全社会一致行动起来,()维护和平,制止战争.关联词填空
- 比较大小 1/(tan(-13π/7)),1/(tan9π/8)
- 一批苹果,卖出总数的20%后,有运来40箱,这时的苹果与原来的比是28:25,这时的苹果多少箱
猜你喜欢