在△ABC中,若sinA·sinC=cos^2B,∠B=1/2(∠A+∠C),S△ABC=4根号3,求三边长a,b,c.
人气:165 ℃ 时间:2020-02-03 11:04:32
解答
∠B=1/2(∠A+∠C)
A+B+C=180
B=60 A+C=120
sinA*sinC=1/2*[cos(A-C)-cos(A+C)]=cos^2B=1/4
得:cos(A-C)=1/2 + cos(A+C)=1/2 -cosB=0;
则|A-C|=90
不妨设A>C;则A-C=90°.
又由 A+C=120 得
A=105°; C=15°
∴ a/c=sinA/sinC=sin(90°+15°)/sin15°=cos15°/sin15°=tan15°
=(1-cos30°)/sin30°=(1-√3/2)/(1/2)=2-√3.
即a=(2-√3)c.①
由正弦定理得:S=(1/2)·ac·sinB=(√3/4)·ac
即(√3/4)·ac=4√3;
a·c=16 ②
由①②解得:
a=2√6-2√2; c=2√2+2√6;
而b=(sinB/sinC)·c=[(√3/2)/sin(60°-45°)]·(2√2+2√6)
=[(√3/2)/(sin60°·cos45°-cos60°·sin45°)]·(2√2+2√6)
=√3.
a=2√6-2√2; b=√3; c=2√2+2√6;
推荐
- 在△ABC中,A=60°,b=1,△ABC面积为3,则a+b+csinA+sinB+sinC的值为( ) A.2393 B.2633 C.833 D.23
- 在△ABC中,A=60°,b=1,△ABC面积为3,则a+b+csinA+sinB+sinC的值为( ) A.2393 B.2633 C.833 D.23
- 在三角形ABC中,sinA=根号5|5,cos=-根号10|10,求sinC的值
- 在△ABC中,A=60°,b=1,△ABC面积为3,则a+b+csinA+sinB+sinC的值为( ) A.2393 B.2633 C.833 D.23
- 在△ABC中,角A,B,C所对的边分别为a,b,c,且满足a+b+c= (根号2)+1,sinA+sinB=(根号2)*sinC,则c=?
- x*x+2xy+y*y 4x 4y+4分解因式
- 人教版九年级英语Unit 2 Self Check翻译
- He will say goodbye to his uncle at the airport tomorrow.(保持原意)
猜你喜欢