∵PA、PB、DE分别切⊙O于A、B、C三点,
∴OB⊥PB,PB=PA,BD=CD,CE=AE,
∴△PDE的周长为:PD+DE+PE=PD+DC+CE+PE=PD+BD+AE+PE=PB+PA=2PB=24cm,
∴PB=PA=12cm,
在Rt△PBO中,OB=
OP2−PB2 |
132−122 |
即⊙O的半径为5cm;
(2)连接OB,OA,
∵PA、PB、DE分别切⊙O于A、B、C三点,
∴OB⊥PB,OA⊥PA,∠BOD=∠COD=
1 |
2 |
1 |
2 |
∵∠APB=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠DOE=∠COD+∠COE=
1 |
2 |
1 |
2 |