> 数学 >
求齐次方程xy'-y-√(y^2-x^2)=0的通解
人气:187 ℃ 时间:2020-01-30 04:40:10
解答
∵xy'-y-√(y-x)=0 ==>y'-y/x-√(y/x-1)=0∴设y=xt,则y'=xt'+t代入方程得xt'-√(t-1)=0 ==>dt/√(t-1)=dx/x==>ln(t+√(t-1))=ln│x│+ln│C│ (C是积分常数)==>t+√(t-1)=Cx==>y/x+√(y/x-1)=Cx==>y+√(y-x)=Cx故原...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版