> 数学 >
若方程(m+5)x^2-(2m+5)x+12=0的两根是直角三角形两锐角的正弦值,则m=?
人气:303 ℃ 时间:2020-01-25 20:35:55
解答
x1=sina x2=sinb=sin(90-a)=cosa
x1^2+x2^2=sina^2+cosa^2=1
x1+x2=(2m-5)/(m+5) x1x2=12/(m+5)
x1^2+x2^2=(x1+x2)^2-2x1x2=(2m-5)^2/(m+5)^2-24/(m+5)=1
(2m-5)^2-24(m+5)=(m+5)^2
4m^2-20m+25-24m-120=m^2+10m+25
3m^2-54m-120=0
(3m-60)(m+2)=0
m>0
m=60/3=20
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版