> 数学 >
如图,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(-3,2),连接AB,以AB为边向上作正方形ABCD.

(1)当点B与点O重合时,求点C的坐标;
(2)设点C的坐标为(x,y),请用含x的代数式表示y;
(3)E是点C关于原点的对称点,连接AE,当点B在x轴上运动时,求AE的最小值.
人气:334 ℃ 时间:2020-04-02 10:42:26
解答
(1)如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,
∵点A(-3,2),
∴OE=3,AE=2,
在正方形ABCD中,AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=90°,
∵∠BCF+∠CBF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
∠ABE=∠BCF
∠AEB=∠BFC=90°
AB=BC

∴△ABE≌△BCF(AAS),
∴BF=AE,CF=BE,
∵点B与点O重合,
∴OE=BE=3,OF=BF=AE=2,
∴点C的坐标为(2,3);
(2)由(1)可知,BF=AE=2,CF=BE,
∵点C的坐标为(x,y),
∴BF=x,CF=y,
∴OB=y-3=x-2,
∴y=x+1;
(3)∵E是点C关于原点的对称点,
∴点E的坐标为(-x,-x-1),
∴AE=
(−x+3)2+(−x−1−2)2
=
2x2+18

∴当x=0时,AE最小=
18
=3
2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版