∵点A(-3,2),
∴OE=3,AE=2,
在正方形ABCD中,AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=90°,
∵∠BCF+∠CBF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
|
∴△ABE≌△BCF(AAS),
∴BF=AE,CF=BE,
∵点B与点O重合,
∴OE=BE=3,OF=BF=AE=2,
∴点C的坐标为(2,3);
(2)由(1)可知,BF=AE=2,CF=BE,
∵点C的坐标为(x,y),
∴BF=x,CF=y,
∴OB=y-3=x-2,
∴y=x+1;
(3)∵E是点C关于原点的对称点,
∴点E的坐标为(-x,-x-1),
∴AE=
(−x+3)2+(−x−1−2)2 |
2x2+18 |
∴当x=0时,AE最小=
18 |
2 |