数列an满足a1+2a2+3a3+...+nan=(n+1)(n+2) 求通项an
急,看清楚再回答,等号右边是(n+1)(n+2)
人气:142 ℃ 时间:2019-12-19 15:02:27
解答
∵数列{a[n]}满足a[1]+2a[2]+3a[3]+...+na[n]=(n+1)(n+2)∴a[1]+2a[2]+3a[3]+...+na[n]+(n+1)a[n+1]=(n+2)(n+3)将上面两式相减,得:(n+1)a[n+1]=2(n+2)∴a[n+1]=2(n+2)/(n+1) 即:a[n]=2(n+1)/n (n≥2)∵a[1]=(n+1)(...
推荐
- 已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n∈N*)
- 已知数列{an}中,若a1+2a2+3a3+…+nan=n(n+1)(n+2)则 an=
- 在数列{an}中,a1=1,a1+2a2+3a3+.+nan=(n+1)(an+1)/2,求{an}的通项
- 设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)
- 已知数列an满足a1+2a2+3a3+……+nan=2^n,求an
- u²+v²-x²-y=0 -u+v-xy+1=0 求∂u/∂x,∂v/∂x
- 西风烈,长空雁叫霜晨月 怎么理解
- 3.She never complained _____ anybody _______ her life.A.to,about B.about,to C.on,to D.to,on
猜你喜欢