答:
①原式
=ab/3*(9a^4b^4-1)
=ab/3(3a^2b^2+1)(3a^2b^2-1)
=ab/3(3a^2b^2+1)(√3ab+1)(√3ab-1) 注,如果没学到无理数的话此步不要.
②原式
=x(x^2-7x+12)
=x(x-4)(x-3)
③原式
=(x-y)(x+y)(x-y-(x+y))
=-2y(x-y)(x+y)
④原式
=(x^2-3-2x)(x^2-3+x)
=(x^2+x-3)(x-3)(x+1)
⑤原式
=((a+2b)+(2a+b))^2
=(3a+3b)^2
=9(a+b)^2
=9*(11/5-6/5)^2
=9
⑥证明:
原式
=[a(a+6)][(a+2)(a+4)]+16
=(a^2+6a)(a^2+6a+8)+16
=(a^2+6a)^2+8(a^2+6a)+16
=(a^2+6a+4)^2
所以a(a+2)(a+4)(a+6)+16是完全平方数.