第一问:设等差数列{an}的前n项和为Sn 若a1=2/3,公差为1,Sk^2=(Sk)^2,求k
第二问:Sn=n^2,求an.
第三问:求等差数列{an},使Sk^2=(Sk)^2成立.
人气:483 ℃ 时间:2019-11-01 06:17:06
解答
1、由已知可得:an=2/3+(n-1)=(3n-1)/3
故前n项和公式:sn=n(a1+an)/2=n(3n+1)/6
sk^2=k^2(3k^2+1)/6,(sk)^2=k^2(3k+1)^2/36
令sk^2=(sk)^2,得:(3k^2+1)/6=(3k+1)^2/36
得k无解,即不存在k满足上述条件.
2、
n=1时,a1=s1=1
n>=2时,an=sn-s(n-1)=2n-1
这样,an=2n-1.
3、
sn=n(a1+an)/2
这样,sk^2=(sk)^2转换为:
k^2(a1+ak^2)/2=k^2(a1+ak)^2/4,化解为:
2*a1+2*ak^2=(a1+ak)^2
其中,ak=a1+(k-1)d,ak^2=a1+(k^2-1)d
4*a1+2(k^2-1)d=4*a1^2+4*a1(k-1)d+(k-1)^2*d^2
即可得关于k的方程:
(d^2-2)*k^2+[4*a1*d-2*d^2]dk+4*a1^2-4*a1-4*a1*d-d^2=0
若对任意的k都成立,则其各项系数均为0,无解;
如为存在k满足条件,则化为d的方程:
(k-1)^2*d^2+[4*a1(k-1)+2-2*k^2]d+4*a1^2-4*a1=0
若k=1,则4*a1^2-4*a1=0,即a1=0或1;
推荐
- 设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k=( ) A.8 B.7 C.6 D.5
- 设无穷等差数列{an}的前n项和为Sn,(1)若首项a1=3/2,公差d=1,求满足Sk²=(Sk)²的正整数k,
- 设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k=?这该怎么解答啊?是2011高考大纲全国...
- 设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k=( ) A.8 B.7 C.6 D.5
- 设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项a1=-4,公差d=2,求满足S(k^2)=(Sk)^2 的正整数k; (Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有S(k^2)=(Sk)^2成立(提示:可用Sn=an^2
- 一大正方体木块漆成红色,将它锯成1000个小正方体,其中未涂色的有多少个?
- 判断:如果b分之a=8分之7【a.b均不为0】,那么7a=8b
- He is a man of great a__.We all like him
猜你喜欢