已知有三个可逆的矩阵A,B,P,AP=PB,求f(A)=A^3+2A^2-3A.如何能得到f(A)=Pf(B)P^(-1)?
人气:466 ℃ 时间:2020-06-23 09:33:12
解答
可一的,
AP=PB
B=P^(-1)AP.A,B,P可逆,则
B,
suoyi
f(A)~f(B),
即
f(A)=Pf(B)P^(-1)
推荐
- 已知有三个可逆的矩阵A,B,P,AP=PB,求f(A)=A^3+2A^2-3A.如何能得到f(A)=Pf(B)P^(-1)?
- 求矩阵,已知AP=PB,其中p=(1 0 0;2 -1 0;2 1 1)B=(1 0 0;0 0 0;0 0 -1)求A及A^5
- 求矩阵,已知AP=PB,其中p=(1 0 0;2 -1 0;2 1 1)B=(1 0 0;0 0 0;0 0 -1)求A及A^5
- 设有矩阵A、P和B三个,AP=PB,其中P= -1 -4 B=-1 0 1 1 0 2 求A的11次方(A^11)
- 矩阵AP=PB,为什么P^(-1)AP=B
- “最是一年春好处”的全诗
- 英语翻译
- a little 后面可以接比较级吗 比较级前用什么修饰
猜你喜欢