证明二元函数极限不存在?

人气:153 ℃ 时间:2019-11-15 19:46:55
解答
分子分母同乘以
根号(xy+1)+1
分子就成了(xy+1)-1 = xy
lim 根号(xy+1)+1=1
所以原式=lim...xy/(x+y)
然后,可以再把分子xy翻下去分母,原式就变成
lim 1/ (1/x+1/y)
这样就可以做了.这样刚好证明了极限为0,是存在的首先纠正个小错误,lim 根号(xy+1)+1=2所以原式子=(1/2) lim 1/ (1/x+1/y)如果x,y同左同右,那么结果极限为0,没问题。但如果x,y一左一右呢?
推荐
猜你喜欢
- 定义在区间[3-a,5]上的函数f(x)为奇函数,则loga(a+8)=
- 41+43+45+.+77+79=
- 两个并排的日字,三个日字,四个日子各念什么啊?还有两个并排的月字,三个月字,四个月字各念什么啊?
- 物体在斜面上匀速下滑,求摩擦力
- p与q同在北纬60度,且相距500哩,p的地方时是下午一点正,若q在p的正东,试求q的地方时?
- 巧切西瓜
- Thanks you for your help.求翻译
- 快车、慢车分别从A、B两地同时出发,相向而行.已知快车、慢车的速度比是5:4,相遇时距两地