利用函数的单调性,证明下列不等式 (1)x-x²>0,x∈(0,1)
人气:122 ℃ 时间:2019-08-21 10:45:18
解答
化成X的平方小于X,变成两个函数,然后,借助图像分析单调性设f(x)=x-x^2,f`(x)=1-2x.当x=1/2时,f`(x)=0,f(1/2)为一个极值。
00,∴f(x)在(0,1/2)增,f(x)>f(0)=0,即x-x^2>0;
1/2f(1)=0,即x-x^2>0;
f(1/2)=1/4>0
综上,可得:x-x^2>0.x∈(0,1)
推荐
猜你喜欢
- 一项工程独做,甲队要十天完成,乙队要15天完成,甲乙两队的工作效率比是多少?
- 求括号的数 2,2,1,0.25 ,()
- 英语翻译
- 已知甲,乙,丙,三个数的和是36甲数比乙数的2倍大1,乙数的½恰好等于丙,则甲乙丙三个数分别为
- 大雪纷纷扬扬地下了起来.改成比喻句谢谢!
- 负数集是什么意思
- (理)与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为_.
- 英语翻译