lim(1+x)(1+x^2)…[1+x^(2^n)],|x|
人气:369 ℃ 时间:2020-03-31 18:37:11
解答
lim(1+x)(1+x^2)…[1+x^(2^n)]
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|<1,所以lim x^(2^n+1)=0
所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)
推荐
猜你喜欢
- 已知平面内三个点A(0,-3),B(3,3)C,(1,-1),则向量AB与BC的夹角为
- 从前,一个小村子里有座漂亮的花园.(缩句)
- There are still____apples in the fruit bowl,will you have another one?A.few B.little C.a few
- terribel weather we had last Sunday.
- 初三物理试题钻木取火的一种方法,将削尖的木棒伸到木板洞里
- 英语中一般什么情况用it is作形式主语开头的句型
- 除去硝酸钾晶体中混有的少量氯化钠用什么办法,原因
- 已知无穷等比数列{an}首项为1,公比为q,前n项和为Sn,求lim(Sn/Sn+1)