> 数学 >
lim(1+x)(1+x^2)…[1+x^(2^n)],|x|
人气:369 ℃ 时间:2020-03-31 18:37:11
解答
lim(1+x)(1+x^2)…[1+x^(2^n)]
=lim(1-x)(1+x)(1+x^2)…[1+x^(2^n)]/(1-x)
=lim(1-x^2)(1+x^2)…[1+x^(2^n)]/(1-x)
.逐项乘下去得:
=lim[1-x^(2^n+1)]/(1-x)
因为|x|<1,所以lim x^(2^n+1)=0
所以原式=lim1/(1-x),这里应该是n→∞,而不是x→∞
答案就是1/(1-x)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版