在△ABC中,三内角A、B、C成等差数列,角B的对边b为1,求证:1<a+c≤2.
人气:478 ℃ 时间:2019-11-04 08:41:55
解答
证法一:∵2B=A+C,又A+B+C=180°,
∴B=60°,C=120°-A.
由正弦定理得
=
=
,
再由合分比定理得:
a+c=
(sinA+sinC)
=
[sinA+sin(120°-A)]
=2sin(A+30°)≤2,
再由两边之和大于第三边,
∴1<a+c.
∴1<a+c≤2.
证法二:先得B=60°(同上得).
再利用余弦定理知cosB=
,即
=
,
即(a+c)
2-1=3ac≤3(
)
2.
解得a+c≤2.
又∵a+c>1,
∴1<a+c≤2.
推荐
- △ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,∠B=30°,△ABC的面积为32,那么b等于( ) A.1+32 B.1+3 C.2+32 D.2+3
- 已知△ABC的三个内角A、B、C成等差数列,a、b、c分别为△ABC所对的边.求证:1/a+b+1/b+c=3/a+b+c(注:可以用分析法证明)
- 已知△ABC的三个内角A、B、C成等差数列,a、b、c分别为△ABC所对的边.求证:1/a+b+1/b+c=3/a+b+c(注:可以用分析法证明)
- 已知三角形abc三内角a,b,c成等差数列,求证:对应三边a,b,c满足1/(a+b)+1/(b+c)=
- 三角形ABC三内角ABC对应三边a b c成等差数列,求角B的范围!
- C9H20的35个同分异构体的结构简式
- I hope you can finish your task().A.success B.successful C.successful D.succed
- 已知向量OP=(cosθ,sinθ),向量OQ=(1+sinθ,1+cosθ)(θ∈[0,π]),则│PQ│的取值范围是____.
猜你喜欢