| 1 |
| x |
证明如下:
∵函数f(x)=x+
| 1 |
| x |
又f(-x)=-x+
| 1 |
| −x |
| 1 |
| x |
∴f(x)=x+
| 1 |
| x |
(2)证明:设x1,x2是(0,1)内的任意两个实数,且x1<x2,
则f(x1)−f(x2)=x1+
| 1 |
| x1 |
| 1 |
| x2 |
| x1−x2 |
| x1x2 |
| x1−x2 |
| x1x2 |
∵x1,x2∈(0,1)且x1<x2,
∴x1−x2<0,1−
| 1 |
| x1x2 |
则(x1−x2)(1−
| 1 |
| x1x2 |
即f(x1)>f(x2).
∴f(x)在(0,1)上为减函数.
| 1 |
| x |
| 1 |
| x |
| 1 |
| x |
| 1 |
| −x |
| 1 |
| x |
| 1 |
| x |
| 1 |
| x1 |
| 1 |
| x2 |
| x1−x2 |
| x1x2 |
| x1−x2 |
| x1x2 |
| 1 |
| x1x2 |
| 1 |
| x1x2 |