1 |
x |
证明如下:
∵函数f(x)=x+
1 |
x |
又f(-x)=-x+
1 |
−x |
1 |
x |
∴f(x)=x+
1 |
x |
(2)证明:设x1,x2是(0,1)内的任意两个实数,且x1<x2,
则f(x1)−f(x2)=x1+
1 |
x1 |
1 |
x2 |
x1−x2 |
x1x2 |
x1−x2 |
x1x2 |
∵x1,x2∈(0,1)且x1<x2,
∴x1−x2<0,1−
1 |
x1x2 |
则(x1−x2)(1−
1 |
x1x2 |
即f(x1)>f(x2).
∴f(x)在(0,1)上为减函数.
1 |
x |
1 |
x |
1 |
x |
1 |
−x |
1 |
x |
1 |
x |
1 |
x1 |
1 |
x2 |
x1−x2 |
x1x2 |
x1−x2 |
x1x2 |
1 |
x1x2 |
1 |
x1x2 |