正实数x1,x2及函数f(x)满足4的x次方=[1+f(x)]/[1-f(x)] 且f(x1)+f(x2)=1 则f(x1+x2)的最小值为( )
因为4^x=(1+f(x))/(1-f(x)),所以f(x)=(4^x-1)/(4^x+1)
且(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1
所以:2(4^(x1+x2)-1)/[4^(x1+x2)+4^x1+4^x2+1]=1
所以:4^(x1+x2)-3=4^x1+4^x2>=2√4^(x1+x2)
解得:4^(x1+x2)>=9
所以:f(x1+x2)=[4^(x1+x2)-1]/[4^(x1+x2)+1]
=1-2/[4^(x1+x2)+1]>=1-2/(9+1)=4/5.
其中里面的
所以:4^(x1+x2)-3=4^x1+4^x2>=2√4^(x1+x2)
解得:4^(x1+x2)>=9
怎么得出大于等于9的?
人气:264 ℃ 时间:2019-08-19 06:59:54
解答
设4^(x1+x2) =t
则t-3>=2根号t
t^2+9-6t>=4t
t^2-10t+9>=0
(t-1 )(t-9)>=0
t>=9或 t
推荐
- 正实数x1,x2及函数f(x)满足4的x次方=[1+f(x)]/[1-f(x)] 且f(x1)+f(x2)=1 则f(x1+x2)的最小值为( )
- 已知正实数x1,x2及函数f(x)=4的x次方-1/4的x次方+1,若f(x1)+f(x2)=1,则f(x1+x2)的最小值为
- 已知函数f(x)=psinx/4,如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值
- (1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时...
- 设函数f(x)=2sin(π2x+π5).若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为 _.
- I did what everyone does who has no idea what to do with themselves when they got out of college and went on to graduate
- Tom has over ten books.(改同义句) Tom has ____ ____ ten books.
- 成语‘狡兔三窟’的来历,请告诉.
猜你喜欢