设函数f(x)=2sin(
x+
).若对任意x∈R,都有f(x
1)≤f(x)≤f(x
2)成立,则|x
1-x
2|的最小值为 ______.
人气:458 ℃ 时间:2019-08-19 01:40:14
解答
函数f(x)=2sin(
x+
)的周期T=
=4,
对任意x∈R,都有f(x
1)≤f(x)≤f(x
2)成立,
说明f(x
1)取得最小值,
f(x
2)取得最大值,|x
1-x
2|
min=
=2.
故答案为:2
推荐
- 已知函数f(x)=psinx/4,如果存在实数x1,x2,使得对任意的实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值
- 已知函数f(x)=2sinωx(ω>0)在区间[−π3,π4]上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3
- 已知函数f(x)=2sinωx(ω>0)在区间[−π3,π4]上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3
- 设实数a不等于0,且函数f(x)=a(x^2+1)-(2x+1/a)有最小值-1
- 设实数a≠0,函数f(x)=a(x2+1)-(2x+1/a)有最小值-1. (1)求a的值; (2)设数列{an}的前n项和Sn=f(n),令bn=a2+a4+…+a2nn,证明:数列{bn}是等差数列.
- 想着暑假预习高一的新课,请问高一有哪些课本,分别是什么版本的?顺便补充一问:选修和必修是肿么一回事?=
- they do homework at seven o'clock every day怎么变一般疑问句?
- 歧化反应原理,从得失电子方面解释一下,
猜你喜欢
- 在2-【2(x+y)-()】=x+2,括号内应填
- 在暗室里用红光照射一幅绚丽多彩的油画作品,将会看到什么现象?为什么?
- 墨守成规象征哪个人物
- 将一个末尾数字不小于零的正整数的末尾数字去掉后,所得的新数是原数的约数,则这种性质的正整数当中,
- 1,2,3,4,5这5个数字可以组成许多个没有重复的四位数,将他们从小到大排列起来,4123是第几个数?
- chuck wall
- 如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复
- 替凡卡的爷爷写一封信给凡卡