> 数学 >
求定积分∫(0,1) 1/(x^2+2x+2)dx
人气:207 ℃ 时间:2020-04-16 12:06:05
解答
原式=∫(0→1)dx/((x+1)^2+1)
=∫(0→1)d(x+1)/((x+1)^2+1)
=arctan(x+1)|(0→1)
=arctan2-π/4
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版