> 数学 >
P是三角形ABC内一点,连接 PA,PC,PB,以PB为边作角PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论
(2)若PA:PB:PQ=3:4:5,连接PQ,判断三角形PQC的形状,并说明理由
人气:273 ℃ 时间:2019-08-20 22:59:26
解答
(1)猜想:AP=CQ.证明如下:
在△ABP与△CBQ中,∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°,所以△BCQ可以看作是△BAP绕点B顺时针旋转60°而得到的.∴AP=CQ.
(2)由PA∶PB∶PC=3∶4∶5,可设PA=3a,PB=4a,PC=5a.
连接PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°.
∴△PBQ为正三角形.∴PQ=4a.
于是在△PQC中,∵PQ2+QC2=16a2+9a2=25a2=PC2.
∴△PQC是直角三角形,∠PQC=90°.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版