∴∠ECD=∠ECB=
| 1 |
| 2 |
| 1 |
| 2 |
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=
| 1 |
| 2 |
∵∠ADC=40°,∠ABC=30°,
∴∠AEC=
| 1 |
| 2 |
(2)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
| 1 |
| 2 |
| 1 |
| 2 |
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB

∴∠D+∠B=2∠E,
∴∠E=
| 1 |
| 2 |
∵∠ADC=m°,∠ABC=n°,
∴∠AEC=
| m°+n° |
| 2 |
(3)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
| 1 |
| 2 |
| 1 |
| 2 |
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
即∠AEC=
| ∠ABC−∠ADC |
| 2 |

