设zn=((1-i)/2)^n,n∈N,Sn=|z2-z1|+|z3-z2|+...+|Zn+1-Zn|,求极限Sn?
如题
人气:254 ℃ 时间:2020-03-24 13:35:42
解答
|Zn+1-Zn|=|((1-i)/2)^(n+1)-((1-i)/2)^n|=|((1-i)/2)^n|*|(1-i)/2-1|=|(1-i)/2|^n*1/√2=(1/√2)^(n+1)Sn=1/√2+(1/√2)^2+.(1/√2)^(n+1)等比数列极限Sn=a1/(1-q)极限Sn=1/√2/(1-1/√2)=√2+1
推荐
- 复数域中,Zn的极限为a,则(Z1+Z2+……+Zn)/n的极限是多少
- 设等比数列{zn}中,其中z1=1,z2=a+bi,z3=6+ai (a,b属于R)
- |z1+z2+z3+.+zn
- 已知|z1|=|z2|=|z3|=1,求|(1/z1+1/z2+1/z3)/z1+z2+z3|的值
- 设z1 z2 z3均为非零复数,且z1/z2=z2/z3=z3/z1,求(z1+z2-z3)/(z1-z2+z3)的值
- to his surprise ,this time there were six .
- 用形容词的适当形式填空 In this country it's very ------(cold)in November,and it's much
- he stepped into the room quietly without being noticed.后面的without being noticed是什么意思?
猜你喜欢