∴
du |
dx |
∂f |
∂x |
∂f |
∂y |
dy |
dx |
∂f |
∂z |
dz |
dx |
又由exy-y=0,两边对x求导得:exy(y+x
dy |
dx |
dy |
dx |
∴
dy |
dx |
yexy |
1−xexy |
y2 |
1−xy |
由ez-xz=0,两边对x求导得:ez
dz |
dx |
dz |
dx |
∴
dz |
dx |
z |
ez−x |
z |
x(z−1) |
∴代入①得:
du |
dx |
∂f |
∂x |
y2 |
1−xy |
∂f |
∂y |
z |
x(z−) |
∂f |
∂z |
du |
dx |
du |
dx |
∂f |
∂x |
∂f |
∂y |
dy |
dx |
∂f |
∂z |
dz |
dx |
dy |
dx |
dy |
dx |
dy |
dx |
yexy |
1−xexy |
y2 |
1−xy |
dz |
dx |
dz |
dx |
dz |
dx |
z |
ez−x |
z |
x(z−1) |
du |
dx |
∂f |
∂x |
y2 |
1−xy |
∂f |
∂y |
z |
x(z−) |
∂f |
∂z |