已知抛物线y2=4X的焦点为F,点A(2,2),抛物线上求一点P,使得PA(绝对值)+PF(绝对值)最小
人气:326 ℃ 时间:2019-08-20 18:22:00
解答
A在抛物线内部
则过A做AB垂直准线x=-1
和抛物线交点是C
由抛物线定义,PF=P到准线距离
在抛物线上任取一点P,做PD垂直准线
画图可以看出
显然PD+PA>AB
所以当P和C重合时|PA|+|PF|最小
此时P纵坐标和A相等
y=2,x=y^2/4=1
所以P(1,2)
推荐
- 已知抛物线Y的二次方=2X的焦点是F,点P是抛物线上的动点,点A(3,2),当PA的绝对值+PF的绝对值取最小值...
- 已知点F是抛物线y^2=4x的焦点,点A(3,2),点p是抛物线的动点,求绝对值PA+绝对值PF的最小值
- 已知抛物线y2=2X的焦点为F,定点A(3,2)在抛物线内,求点P使|PA|+|PF|的最小,点P的坐标是?
- 点P为抛物线y^2=8x上一动点,F为抛物线焦点,点A坐标为(2,3),则PA的绝对值+PF的绝对值的最小值为
- 已知A(3,1)和焦点为F的抛物线y^2=4x,在抛物线上找一点P使得绝对值PA加绝对值PF取的最小值,求P点的座标
- 英语翻译
- 2^a=5^b=10,则a+b的最小值为
- 读了草房子最大的启发和感受是什么
猜你喜欢
- 关于勇气.实践.毅力 的名言`和故事 (写作文要用的论据)
- 蝉在雨天鸣叫,还是在晴天?为什么?
- 1.已知圆C的方程是f(x,y)=0,点A(x0,y0)是圆外一点.那么方程f(x,y)-f(x0,y0)=0表示的曲线是()
- i have never heard of that place before
- 什么的小鸟在天上飞
- 初二因式中的分组分解法有两道题怎么解.
- 如图,两摞同一规格的纸杯整齐的叠放在桌面上,如果将这两摞纸杯整齐的合成一摞时,高度是多少厘米?
- 一个正方形的面积是8,它的边长是多少?它的边长是有理数还是无理数?