初等数论关于最大公因数的证明
a,b是两个正整数,证明(2^a-1,2^b-1)=2^r-1.其中r=(a,b)
人气:368 ℃ 时间:2020-05-19 02:47:46
解答
由Bezout定理,存在正整数u,v使ua-vb = (a,b) = r.
设d = (2^a-1,2^b-1),则d | 2^b-1 | 2^(vb)-1,进而有d | 2^(vb+r)-2^r = 2^(ua)-2^r.
又d | 2^a-1 | 2^(ua)-1,相减得d | 2^r-1.
反过来,由r | a有2^r-1 | 2^a-1,同理2^r-1 | 2^b-1,故2^r-1 | d.
于是(2^a-1,2^b-1) = d = 2^r-1.
推荐
猜你喜欢
- 请问I am lily who live in Paris.和 I am lily who lives in Paris 哪个正确
- 一个长方体冰柜,从里面量90cm,宽50cm,深50cm.它的容积是多少立方分米
- 美学中的名词解释 .
- “1.5*X的值等于3.6:4.8的值”怎么算比例(数学)
- 英语翻译
- 复合重句 中,where 和which用法有点歧义,如下题
- 甲乙两人相向而行甲的速度是20千米/小时,乙的速度是18千米/小时,他们在离中点3千米是相遇,问全?
- 在四边形ABCD中,AB>CD.E.F分别是对角线BD.AC的中点,求证:EF>1/2(AB-CD)