> 数学 >
已知函数f(x)=2sin(x-
π
6
)sin(x+
π
3
),x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,若A=
π
4
,锐角C满足f(
C
2
+
π
6
)=
1
2
,求
BC
AB
的值.
人气:327 ℃ 时间:2020-07-11 12:11:51
解答
(Ⅰ)f(x)=2sin(x-
π
6
)sin[
π
2
+(x-
π
6
)]=2sin(x-
π
6
)cos(x-
π
6
)=sin(2x-
π
3
),
∵ω=2,∴函数f(x)的最小正周期T=
2
=π;
(Ⅱ)由(Ⅰ)得,f(
C
2
+
π
6
)=sin[2(
C
2
+
π
6
)-
π
3
]=sinC,
由已知sinC=
1
2

又角C为锐角,
∴C=
π
6

∵A=
π
4

∴由正弦定理
BC
sinA
=
AB
sinC
,得
BC
AB
=
sinA
sinC
=
2
2
1
2
=
2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版