平面薄片所占闭区域D由抛物线y=1/2x^2及直线y=x所围成,在点(x,y)处的面密度为x^2+y^2,求薄片的重心
人气:112 ℃ 时间:2020-04-17 23:36:50
解答
质心定义:x`=(∑μi*xi)/(∑μi),y`=(∑μi*yi)/(∑μi) 积分区域为:0≤x≤1,x^2≤y≤x x`=(∑μi*xi)/(∑μi)=(∫xμdA)/(∫μdA) =[∫∫x(x^2)ydxdy]/[∫∫(x^2)ydxdy] =[∫x(x^2)(∫ydy]dx)/[∫(x^2)(∫ydy)dx] =[∫x(x^2)(y^2/2)dx]/[∫(x^2)(y^2/2)dx] =[1/2∫x(x^2)(x^2-x^4)dx]/[1/2∫(x^2)(x^2-x^4)dx] x^2≤y≤x =[∫(x^5-x^7)dx]/[∫(x^4-x^6)dx] =(x^6/6-x^8/8)/(x^5/5-x^7/7) =(1/6-1/8)/(1/5-1/7) 0≤x≤1 =35/48 y`=(∑μi*yi)/(∑μi)=(∫yμdA)/(∫μdA) =[∫∫y(x^2)ydxdy]/[∫∫(x^2)ydxdy] =[∫(x^2)(∫y^2dy)dx]/[∫(x^2)(∫ydy)dx] =[∫(x^2)(y^3/3)dx]/[∫(x^2)(y^2/2)dx] =[1/3∫(x^2)(x^3-x^6)dx]/[1/2∫(x^2)(x^2-x^4)dx] x^2≤y≤x =2/3[∫(x^5-x^8)dx]/[∫(x^4-x^6)dx] =2/3(x^6/6-x^9/9)/(x^5/5-x^7/7) =2/3(1/6-1/9)/(1/5-1/7) 0≤x≤1 =35/54 ∴薄片质心坐标为(x`,y`)=(35/48,35/54)
推荐
- 设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心
- 1.设平面薄板所占闭区域D由直线 x+2*y=5及y=x 所围成,其面密度是v(x,y)=x^2+y^2 ,求此薄板的质量.
- 平面薄片所占区域D是由x+y=2,y=x和x轴所围成,他的面密度p(x,y)为(x,y)到原点距离的平方,求薄片质量M.
- 平面薄片所占的闭区域D由直线x+y=2,y=x,y=0 所围成,它的面密度u(x,y)=x+2y.
- 已知平面薄片所占区域D={(x,y)|0≤x≤1,0≤y≤1)}面密度M(x,y)=xy,求其质量M
- 雨下的多么大啊!.翻译成英语
- 天空究竟是蓝的还是绿色?你们知道吗
- 虫字旁一个乔,是什么字.问字的发音,
猜你喜欢