若数列an满足a1=1/3,且对任意正整数m,n都有am+n=am*an.设前n项和为sn,则s10-s9的值是?
人气:122 ℃ 时间:2020-05-12 21:36:58
解答
请问是am+n中是m+n是下标还是只有m是下标?
如果是m+n是下标,则可设m=1
则an+1=an×a1=an/3
∴后一项是前一项的1/3倍,则这是以1/3为公比,1/3为首项的等比数列.
∴Sn=1/2-1/(2×3^n)
∴S10-S9=1/(2×3^10)-1/(2×3^9)=-1/3^10
如果只有M是下标,那我也不知道了.
推荐
- 若数列an满足a1=1/3,且对任意正整数m,n都有am+n=am*an.设前n项和为sn,则s10-s9等于?
- 等差数列{an}中,已知a1>0,Sn为数列的前n项和,若S9>0,S10
- 数列an满足a1=1/3,an+1=an^2+an,记sn=1/(a1+1)+1/(a2+1)+.+1/(1+an),求s10的整数部分?
- 等差数列{an}中,已知a1>0,Sn为数列的前n项和,若S9>0,S10
- 在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15
- 二 证明 ((a+e)²+(b+f)²+(c+g)²+(d+h)²)½≤(a²+b²+c²+d²)½+(e²+f²
- 在三角形ABC中,已知向量AB=(2,3),向量AC=(1,K),且三角形ABC的一个内角为直角,求实数K的值
- 翻译:The clocks in all public places in the UK are put forward an hour , from 1 a.m. to 2 a.m.
猜你喜欢