∫(1→2)xf(x)dx=2,则∫(0→3)f(√(x+1)dx)=
人气:383 ℃ 时间:2020-05-13 21:04:02
解答
换元,令t=√(x+1),其中0则x=t^2-1
dx=2tdt
∫(0→3)f(√(x+1)dx)
=∫(1→2)f(t)*2tdt
=2∫(1→2)tf(t)dt
=2∫(1→2)xf(x)dx
=4
推荐
- ∫(0,3) xf(x-1)dx
- 证明∫(0,a)f(x^2)dx=1/2∫(0,a^2)xf(x)dx (a>0)
- f(1)=2∫xf(x)dx中的
- 设f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(2)=2,则∫(0,1)xf''(x)dx=
- 已知f''(x)在[0,1]上连续,f'(1)=0,且f(1)-f(0)=2,则∫(0,1)xf''(x)dx=
- 三角加正方=39正方加圆=56圆加三角=47,圆是几?正方是几?三角是几
- 海伦 凯勒在《假如给我三天光明》中说过哪些名言?
- Could you tell me what (happen)in your home town in a few years' time?
猜你喜欢