这是利用函数的单调行证明不等式
证明:当x≠0时e^x>1+x.
这是书上的例题,书上是这样解的
证 设f(x)=e^x-(1+x),则f(0)=0,且f'(x)=e^x-1
由此可见,当x>0时f'(x)>0,从而f(x)在区间[0,+∞)
上单调增加.当x<0时f'(x)<0,从而f(x)在区间(-∞,0]上单调减少
所以,x≠0时都有f(x)>f(0)=0,即
f(x)=e^x-(1+x)>0 (x≠0)
我还是没看懂为什么 x≠0时f(x)>f(0)=0
前面也就是说明了f'(x)>0和<0的单调区间
这并不能说明f(x)>0
人气:363 ℃ 时间:2020-04-15 13:01:55
解答
要理解单调的意思.
在区间[0,+∞) 上单调增加,说明对于任意的0
推荐
猜你喜欢
- 一项工程独做,甲队要十天完成,乙队要15天完成,甲乙两队的工作效率比是多少?
- 求括号的数 2,2,1,0.25 ,()
- 英语翻译
- 已知甲,乙,丙,三个数的和是36甲数比乙数的2倍大1,乙数的½恰好等于丙,则甲乙丙三个数分别为
- 大雪纷纷扬扬地下了起来.改成比喻句谢谢!
- 负数集是什么意思
- (理)与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为_.
- 英语翻译