> 数学 >
如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.

(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.
人气:345 ℃ 时间:2019-09-20 14:38:23
解答
(1)证明:∵点C是线段AB的中点,
∴AC=BC,
又∵CD平分∠ACE,CE平分∠BCD,
∴∠1=∠2,∠2=∠3,
∴∠1=∠3,
∵在△ACD和△BCE中,
CD=CE
∠1=∠3
AC=BC

∴△ACD≌△BCE(SAS).
(2)∵∠1+∠2+∠3=180°,
∴∠1=∠2=∠3=60°,
∵△ACD≌△BCE,
∴∠E=∠D=50°,
∴∠B=180°-∠E-∠3=70°
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版