| a |
| x |
| x2−2x+a |
| x |
解得a>1时,定义域为(0,+∞)
a=1时,定义域为{x|x>0且x≠1},
0<a<1时,定义域为{x|0<x<1−
| 1−a |
| 1−a |
(2)设g(x)=x+
| a |
| x |
g′(x)=1−
| a |
| x2 |
| x2−a |
| x2 |
∴g(x)=x+
| a |
| x |
∴f(x)=lg(x+
| a |
| x |
∴f(x)=lg(x+
| a |
| x |
| a |
| 2 |
(3)对任意x∈[2,+∞)恒有f(x)>0,
即x+
| a |
| x |
∴a>3x-x2,而h(x)=3x−x2=−(x−
| 3 |
| 2 |
| 9 |
| 4 |
∴h(x)max=h(2)=2,∴a>2
