> 数学 >
已知a为实数,函数f(x)=ex(x2-ax+a).
(Ⅰ)求f′(0)的值;
(Ⅱ)若a>2,求函数f(x)的单调区间.
人气:462 ℃ 时间:2020-06-16 08:41:33
解答
(Ⅰ)f'(x)=ex(x2-ax+a)+ex(2x-a),
可得f'(x)=ex[x2-(a-2)x].
所以f'(0)=0.
(Ⅱ)当a>2时,令f'(x)>0,可得x<0或x>a-2.
令f'(x)<0,可得0<x<a-2.
可知函数f(x)的单调增区间为(-∞,0),(a-2,+∞),单调减区间为(0,a-2).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版