已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
人气:138 ℃ 时间:2019-08-19 03:08:25
解答
an+2Sn*Sn-1=0
其中an=Sn-Sn-1代入上式:
Sn-Sn-1+2Sn*Sn-1=0
a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:
1/Sn-1-1/Sn+2=0
即:1/Sn-1/Sn-1=2
{1/Sn}为等差数列,公差为2,首项1/S1=1/a1=2
1/Sn=2+2(n-1)=2n
Sn=1/2n
推荐
- 已知数列an的前n项和为Sn,且满足Sn=Sn-1/2Sn-1+1,a1=1/2(1)求证:1/Sn是等差数列(2
- 已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
- 设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5,a3成等差数列.
- 已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n大于等于2),a1=1/2,求证:{1/Sn}是等差数列.
- 在数列an中 a1=1 An=2Sn^2/(2Sn-1) 证明1/sn是等差数列 并求 sn
- 学校田径队组原来女生人数占3分之1,后来又有6名女生参加进来,这样女生就占田径队组总人数的9分之4.
- 翻译:您必须先付定金,款到付货
- 一均匀的骰子掷两次,用X表示两次中最大的点数,试求X的分布列
猜你喜欢