设H(x)在x=0处二阶导数连续,且H(0)=0,H'(0)不等于0,证明:曲线y=f(x)=(1—cosx)H(x)在x=0
证明f(x)在x=0处必有拐点
人气:237 ℃ 时间:2019-08-18 16:28:14
解答
y'(x)=sinx * H(x) + (1-cosx)H'(x)y''(x)=cosx * H(x) + 2sinx* H'(x)+ (1-cosx)H''(x)当 x --> 0 时,y''(x)/x = cosx * H(x)/x + 2sin(x)/x * H'(x)+ (1-cosx)/x * H''(x) ---> 1 * H'(0) + 2 * H'(0) + 0 * H''...
推荐
- 设f(x)在(-1,1)内具有二阶连续导数,且f''(x)不等于0,证明:
- 设f(X)具有2阶连续导数,且f(a)=0,g(x)=f(x)/x-a,x不等于a,g(x)=f'(a),x=a,求g'(x)并证明g(x)的一阶导数
- 设曲线y=f(x)在原点与X轴相切,函数f(x)具有连续的二阶导数,且x≠0时,f的一阶导数不等于0,证明该曲线在原点处的曲率半径为R=limx→0|x^2/(2f(x))
- 当x不等于0时,f(x)=e^(-1/x^2),当x=0时,x=0,证明f(x)的导数在点x=0处连续.
- 用导数方法证明,|x+1/x|≥2(x不等于0)
- 一个数先减少20%,再增加( )后结果不变. A.20% B.25% C.30% D.40%
- 描写人物衣着、动作、神态、语言、心理活动的句子,急,
- 一辆客车和一辆货车分别从甲乙两地同时相向开出.客车速度为60千米/时,货车的速度比客车慢1/3,3.5小时后两
猜你喜欢