设函数f(x)=(cosx)^2+asinx-a/4-1/2,当a取何值时,方程f(x)=(1+a)sinx在[0,2π)上有两解?
人气:384 ℃ 时间:2019-08-18 07:52:30
解答
f(x)=(cosx)^2+asinx-a/4-1/2=1-(sinx)^2+asinx--a/4-1/2=(1+a)sinx
(sinx)^2+sinx+a/4-1/2=0,(sinx+1/2)^2+a/4-3/4=0.
(sinx+1/2)^2=(3-a)/4.
(3-a)/4>=0,a“且”应改为“或”吧
推荐
- 设函数f(x)=cosx+asinx-a/4+1/2,当a取何值时,方程f(x)=(1+α)sinx在[0,2π)上有两解
- 设函数f(x)=(sinx+cosx-|sinx-cosx|)/2(x∈R),若在区间[0,m]上方程f(x)=-根号3/2恰有四个解,则m取值范围
- 设函数f(x)=sinx-cosx+x+1 0≤x<2π.求函数的单调区间与极值
- 已知函数f(x)=cosx+sinx,则函数f(x)在x0=π2处的切线方程是_.
- 设函数f(x)=sinx+cosx-|sinx-cosx|2(x∈R),若在区间[0,m]上方程f(x)=-32恰有4个解,则实数m的取值范围是 _ .
- 一项工程,如果甲单独做6天可以完成这项工程的二分之一,如果乙单独做10天完成这项工程,现在甲、乙合作
- 什么的大海(形容词)
- 一个平行四边形的面积是625平方米,它的边长是多少米?
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋