已知一元二次方程a(b-c)x*2+b(c-a)x+c(a-b)=0有两个相等的实根,求证:1/a,1/b,1/c成等差数列
30
人气:482 ℃ 时间:2019-09-03 06:55:19
解答
∵a(b-c)x^2+b(c-a)x+c(a-b)=0有等根
∴Δ=[b(c-a)]^2-4[a(b-c)][c(a-b)]=0
a^2b^2+b^2c^2-2acb^2
-4bca^2+4acb^2+4a^2c^2-4abc^2=0,
a^2b^2+b^2c^2+2acb^2-4ac(ab+bc)+4a^2c^2=0
(ab+bc)^2-4ac(ab+bc)+4a^2c^2=0
(ab+bc-2ac)^2=0
∴ab+bc-2ac=0,
ab+bc=2ac,两边同除以abc得:(1/c)+(1/a)=2/b,
∴2/b=1/a+1/c
∴1/a,1/b,1/c成等差数列
推荐
- 关于x的一元二次方程a*(b-c)x^2+b*(c-a)x+c(a-b)=0有两个相等的实数根 求证1/a,1/b,1/c成等差数列
- 已知一元二次方程(b-c)x^2+(c-a)+(a+b)=0的两个根相等,求证a,b,c成等差数列
- 已知一元二次方程a( b-c )x∧2+b(c-a)x+c(a-b)=0有两个相等的实根.求证:1/a,1/b,1/c成等差数列
- 已知一元二次方程a(b-c)x²+b(c-a)x+c(a-b)=0有两个相等的实数根,求证:1/a,1/b,1/c成等差数列.(abc
- .设一元二次方程(b-c)x∧2+(c-a)x+a-b有两个相等的实根.求证:abc互为等差数列
- 已知定义在R上的奇函数f(x),满足f(x-4)= - f(x),且在[0,2]上是增函数,则
- 一个三角形的面积是40平方厘米,如果底扩大4.5倍,高缩小到原来的1/2,面积会增加多是平方厘米
- 太原市2011-2012学年九年级第一次测评物理谢谢了,
猜你喜欢