数学教委卷九下单元测试中的最后一题,谁会,
正方形ABCD在直角坐标系中,A在X轴正半轴上,D在Y轴的负半轴上,AB交Y轴正半轴于E,BC交X轴负半轴于F,OE=1,抛物线Y=ax²+bx-4过A,D,F三点.
(3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP垂直于PH且AP=PH,若存在,请给与证明,若不存在,请说明理由.
能给个图吗,图看明白了,
人气:468 ℃ 时间:2020-06-02 12:19:32
解答
在射线 DB 上存在一点 P ,在射线 CB 上存在一点 H .
使得 AP ⊥ PH ,且 AP = PH 成立,证明如下:
当 点 P 如图① 所示位 置时,不妨设 PA = PH ,过点 P 作 PQ ⊥ BC ,PM ⊥ CD ,PN ⊥ AD ,垂足分别为 Q,M ,N .
若 PA = PH .由 PM = PN 得:
AN=PQ ,∴ Rt△PQH ≌ Rt△ APN
∴∠HPQ = ∠PAN .
又 ∠PAN + ∠APN = 90°
∴∠APN + ∠HPQ = 90°
∴ AP ⊥ PH .
当点 P 在如图②所示位置时,
过点 P 作 PM ⊥ BC ,PN ⊥ AB ,
垂足分别为 M ,N .
同理可证 Rt△PMH ≌ Rt△PAN .
∠MHP = ∠NAP .
又 ∠MHP = ∠HPN ,
∠HPA = ∠NPA + ∠HPN = ∠MHP + ∠HPM = 90° ,
∴ PH ⊥ PA .
当 P 在如图③所示位置时,
过点 P 作 PN ⊥ BH ,垂足为 N ,PM ⊥ AB 延长线,垂足为 M.
同理可证 Rt△PHM ≌ Rt△PMA .
∴ PH ⊥ PA .
推荐
- 习题1.2
- 小学六年级教委单元测试六的题目是什么?急!
- ABCD是矩形,AB=12,BC=16,圆O1,O2分别为△ABC,△ADC的内切圆,E,F为切点,则EF的长是
- 如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是( ) A.1 B.54 C.127 D.94
- 小学二年级单元测试A卷数学第三单元第九题第1小题
- 将15分之1的分子和分母同时加上一个相同的自然数,得到的新分数与二分之一相等.加上的自然数是()过程)
- 什么是非共点力?非共点力平衡的条件是什么?
- 在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则A到平面PBC的距离是?
猜你喜欢