已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
1,求函数f(x)在区间(0,e】上的最小值.
人气:288 ℃ 时间:2019-09-29 14:49:41
解答
(1)f(x)的导函数为:f‘(x)=-a/x^2+(1/x)
令f‘(x)>=0,得x>=a
f‘(x)
推荐
- 已知函数f(x)=ax-lnx. ,g(x)=lnx/x,定义域是(0,e],e是自然对数的底数,a属于R
- 已知a∈R,函数f(x)=a/x+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). (1)求函数f(x)在区间(0,e]上的最小值; (2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线
- 已知a∈R,函数f(x)=a/x+lnx-1,g(x)=xlnx-2x(其中e为自然对数的底数).
- 已知函数f(x)=e^x+ax,g(x)=(e^x)lnx (e是自然对数的底数)
- 已知函数f(x)=lnx(x>0),证明对一切x>0,有f(x)>1/e^x - 2/ex (e为自然对数的底数)
- 2³+4³+6³+8³……98³+100³=?已知:1³=1=1/4×1²×2²
- 09年过年四字成语祝福语
- 书架上有英语书15本,英语书是数学书的1/3,体育书是英语书的2倍,体育书占总数书的几分之几?
猜你喜欢