a
= 1515...15(1004个15)乘以333...33(2008个3,即1004个33)
= 15×0101…01(1004个01)×33×0101…01(1004个01)
= 45×0101…01(1004个01) × 11×0101…01(1004个01)
= 45×0101…01(1004个01)×9999…99(1004个99)/9
= 0505…05(1004个05)×9999…99(1004个99)
= 5050…50(1004个50)×【10000…00(1004个00)-1】/10
= 5050…50(1003个01)4949…49(1004个49)50/10
= 5050…50(1003个50) 4949…49(1004个49) 5
因此所有位上数字和 = (5 + 4 + 9)×1004 = 18072