设函数f(x)具有二阶导数,并满足f(x)=-f(-x),且f(x)=f(x+1).若f′(1)>0,则( )
A. f″(-5)≤f′(-5)≤f(-5)
B. f(5)=f″(-5)<f′(-5)
C. f′(-5)≤f(-5)≤f″(-5)
D. f(-5)<f′(-5)=f″(-5)
人气:268 ℃ 时间:2020-06-20 01:10:41
解答
由f(x)=f(x+1)知,
f(x)是周期为1的周期函数,而可导的周期函数的导函数仍为周期函数,
因而f'(x),f''(x)均是周期为1的周期函数.
又f(x)为奇函数,
故 0=f(0)=f(-1)=f(-2)=…=f(-5),
f'(1)=f'(0)=f'(-1)=f'(-2)=…=f'(-5)>0,
且 f''(0)=f''(-1)=f''(-2)=…=f''(-5).
又因 f'(x)为偶函数,f''(x)为奇函数,
故f''(0)=0,因此f''(5)=0,
于是有 f(5)=f''(-5)<f'(-5).
故选:(B).
推荐
猜你喜欢
- 表示"想"的四字成语
- 销售给红星工厂甲产品100件,每件售价300元,计30000元,增值税销售项税额5100元,款项己收银行存款户
- 火星—地球之间有什么关系?
- 某工厂去年实际产值2400万元,比计划增长3/5,计划产值多少万元?
- 鸡的脚比兔的脚少24只,鸡有多少只,兔有多少只?
- 为你的幸福,我会不惜一切代价英文怎么说?
- 关于正方形剪成三角形的问题
- 某市中学生举行足球赛,共赛17轮,计分方法是胜一场得3分,平一场得1分,负一场得0分,在这次足球赛中,若