已知函数f(x)=sin²x+acosx+5/8a-3/2,a∈R当a=1时求函数f(x)的最大值
对于区间【0,π/2】上任意一个x,都有f(x)≤1成立,求实数a的取值范围
人气:246 ℃ 时间:2020-01-30 23:44:48
解答
(1)当a=1时f(x)=sin²x+cosx-7/8 对f(x)求导,得:f′(x)=2sinxcosx-sinx=sinx(2cosx-1) 令f′(x)=0,得:sinx=0或cosx=1/2 分析其一个周期x∈[0,2π] 当x∈(0,π/3)时,f′(x)>0,f(x)单调递增 当x∈(π/3,π)时f′(x)<0,f(x)单调递减 当x∈(π,5π/3)时,f′(x)>0,f(x)单调递增 当x∈(5π/3,2π)时,f′(x)<0,f(x)单调递减 比较两个极大值f(π/3)和f(5π/3)得:f(5π/3)=f(π/3)=3/8 所以当a=1时,f(x)的最大值为3/8 (2) 令t=cosx,则1-t²=sin²x,对于x∈[0,π/2],有t∈[0,1] 于是f(x)=1-t²+at+(5/8)a-3/2=-t²+at+(5/8)a-1/2 令g(t)=-t²+at+(5/8)a-1/2,当g(t)取得最大值时,对应的f(x)也能取得相等的最大值 对g(t)求导,得:g′(t)=a-2t 当a≤0时,对于t∈[0,1]有g′(t)≤0,g(t)在t∈[0,1]上单调递减 于是当t=0时g(t)取得最大值g(0)=(5/8)a-3/2<0,符合题设 当a>2时,g′(t)在t∈[0,1]上为正,g(t)在t∈[0,1]上单调递增,于是当t=1时g(t)取得最大值g(1)=(13/8)a-3/2 令(13/8)a-3/2≤1,得:a≤20/13<2,不符合 当0<a≤2时,g′(t)在t∈[0,a/2)时为正,在t∈(a/2,1]时为负 于是当t∈[0,a/2)时,g(t)单调递增;当t∈(a/2,1]时,g(t)单调递减 当t=a/2时g(t)取得最大值g(a/2)=a²/4+(5/8)a-1/2 令g(a/2)≤1,得a²/4+(5/8)a-3/2≤0,即2a²+5a-12≤0,(2a-3)(a+4)≤0 解出-4≤a≤3/2,于是0<a≤3/2 ∴所求a的范围是a≤3/2
推荐
- 设函数y=sin^2x+acosx+5/8a-3/2(0≤x≤π/2)的最大值是1.求a的值
- 已知函数f(X)=sin方x+acosx+5/8a-3/2在x属于【0,2派】上的最大值为1,求a
- 已知函数f(x)=sin²x+acosx+5/8a-3/2当a=1时求函数最大值
- 函数y=sin^2x+acosx+5/8a-3/2,(x∈R)的最大值是1.求a的值
- 函数y=sin*x+acosx+5/8a-3/2在[0,~]上的最大值为1.求a.
- ()全社会一致行动起来,()维护和平,制止战争.关联词填空
- 比较大小 1/(tan(-13π/7)),1/(tan9π/8)
- 一批苹果,卖出总数的20%后,有运来40箱,这时的苹果与原来的比是28:25,这时的苹果多少箱
猜你喜欢