> 数学 >
∫x*arcsinx 求不定积分
人气:488 ℃ 时间:2020-01-26 02:17:06
解答
∫ xarcsinx dx
= ∫ arcsinx d(x²/2)
= (x²/2)(arcsinx) - (1/2)∫ x²*(arcsinx)' dx
= (x²arcsinx)/2 - (1/2)∫ x²/√(1-x²) dx
令x=siny,dx=cosydy
= (x²arcsinx)/2 - (1/2)∫ sin²y/cosy * cosydy
= (x²arcsinx)/2 - (1/4)∫ (1-cos2y) dy
= (x²arcsinx)/2 - (1/4)(y-1/2*sin2y) + C
= (x²arcsinx)/2 - (1/4)arcsinx - (x/4)√(1-x²) + C
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版