已知椭圆的方程2x^2+y^2=2,过一焦点的直线与椭圆交与A、B两点.求三角形ABO(O为原点)的面积的最大值
具体!
人气:198 ℃ 时间:2019-08-19 07:47:07
解答
2x²+y²=2
x²+y²/2=1
a²=2,b²=1,c²=2-1=1
焦点(0,1)(0,-1)
设过焦点的直线为y=kx+1
代入
2x²+k²x²+2kx+1=2
(k²+2)x²+2kx-1=0
x1+x2=-2k/(k²+2)
x1×x2=-1/(k²+2)
原点到AB的距离d=1/√(1+k²)
S△AOB=1/2×1/√(1+k²)×√(1+k²)[(x1+x2)²-4x1x2]
=√[k²/(k²+2)²+/(k²+2)]
=√(k²+k²+2)/(k²+2)²
=√2×√(k²+1)/(k²+2)²
=√2×√[1/(k²+2)-1/(k²+2)²]
令y=1/(k²+2)-1/(k²+2)²,x=1/(k²+2)
y=x-x²=-(x²-x)=-(x-1/2)²+1/4
当x=1/2时,y有最大值=1/4
此时k=0
S三角形最大值=√2/2
当直线过焦点(0,-1)时,
推荐
- 设经过右焦点F的直线l与椭圆x^2/2+y^2=1交于A,B两点,求三角形AOB的面积最大值.O为原点
- 椭圆两焦点为 F1(-4,0),F2(4,0),P在椭圆上,若△PF1F2的面积的最大值为12,则该椭圆的标准方程为( ) A.x225+x29=1 B.x225+y216=1 C.x216+y29=1 D.x210+y26=1
- 已知椭圆的方程是X^2/16+Y^2/9=1,过左焦点F1的直线叫椭圆于A、B两点,求三角形ABF2的周长
- 已知椭圆E的方程为2x平方+y平方=2,过椭圆E的一个焦点的直线l交椭圆于A,B两点,求三角形的面积最大值
- 已知中心在原点,一焦点为F(0,√50)的椭圆被直线l:y=3x-2截得的弦的中点横坐标为1/2,求此椭圆的方程
- 方程组x+2y=-5 7x-2y=13的解
- 用篱笆围成一个半径为5米的圆形鸡舍,需要篱笆()米
- 求大地坐标的含义
猜你喜欢