> 数学 >
解三角方程sin2x-4(sinx+cosx)+4=0
人气:400 ℃ 时间:2020-03-26 11:12:26
解答
sin2x=2sinxcosx
令sinx+cosx=t
则2sinxcosx=(sinx+cosx)²-1=t²-1
原方程变为
t²-1-4t+4=0
t²-4t+3=0
解得t=1或t=3(舍去)
sinx+cox=1
2sinxcosx=0
所以sinx=0,cosx=1或sinx=1,cosx=0
所以x=360k或x=360k+90,其中k为整数
也可以换成弧度表示~
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版