椭圆x^2/16+y^2/9=1,直线y=x+b与椭圆交于A,B两点,若向量OA+向量OB=向量OC,且C在椭圆上,求b
有思路,计算太烦,
人气:116 ℃ 时间:2020-09-25 15:45:16
解答
∵A、B都在直线y=x+b上,∴可分别设A、B的坐标为(m,m+b)、(n,n+b).
联立:y=x+b、x^2/16+y^2/9=1,消去y,得:x^2/16+(x+b)^2/9=1,
∴9x^2+16(x^2+2bx+b^2)=16×9,∴25x^2+32bx+16b^2-16×9=0.
显然,m、n是方程 25x^2+32bx+16b^2-16×9=0 的两根,∴由韦达定理,有:
m+n=-32b/25.
由A(m,m+b)、B(n,n+b),得:
向量OA=(m,m+b)、向量OB=(n,n+b).
∴向量OA+向量OB=(m+n,m+n+2b),
∴依题意,有:向量OC=(m+n,m+n+2b)=(-32b/25,-32b/25+2b).
∴点C的坐标为(-32b/25,-32b/25+2b).
∵点C在椭圆上,∴(-32b/25)^2/16+(-32b/25+2b)^2/9=1,
∴32×2(b/25)^2+18×2(b/25)^2=1,∴(32+18)×2(b/25)^2=1,
∴100(b/25)^2=1,∴10b/25=1,或10b/25=-1,∴b=5/2,或b=-5/2.
即:满足条件的 b 为 5/2,或 -5/2.
推荐
- 中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,点C满足向量OA+向量OB=2×向量OC,若AB=2√2,OC的斜率为1/2,O为原点,求椭圆方程
- 椭圆x^2/3+y^2=1,直线y=x与椭圆交于A,B两点,C为椭圆的右顶点,向量OA·向量OC=3/2若椭圆上两点E、F使向
- 直线l:y=kx+根号2与椭圆C:x^2/3+y^2=1交于不同的两点A.B,且向量OA乘向量OB=1,求k值
- 设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(OA向量+OB向量),N(1/2,1/2)当L绕M旋转时,求
- 已知椭圆C:x^2/4+y^2=1,直线l与椭圆C相交于A,B两点,向量OA*向量OB=0(O为坐标原点),问:
- In the end ,I found the answer _ the difficult question.A.to B.of C.about
- 求part of your world的歌词加翻译
- 一本书,已经看了总页数的60%,没有看的与全书的比是( ) A.2:3 B.3:5 C.2:5 D.1:3
猜你喜欢