在等差数列an,bn中,前n项的和分别为Sn,Tn,且Sn/Tn=(7n+2)/(n+3),则a7/b7=
人气:416 ℃ 时间:2019-10-10 03:27:16
解答
sn/tn=(7n+2)/(n+3) Sn/Tn=n(7n+2)/n(n+3)Sn/Tn=[n(7n+2)/2]/[n(n+3)]/2Sn=n(a1+an)/2Tn=n(b1+bn)/2a1+an=7n+2b1+bn=n+3a7/b7=2a7/2b7=(a1+a13)/(b1+b13)=(7*13+2)/(13+3)=93/16
推荐
- 设等差数列{an},{bn}的前n项和分别是Sn,Tn,且Sn/Tn=7n+2/n+3求a7/b7
- 两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若Sn/Tn=(7n+1)/(4n+27),则a7/b7=
- 设等差数列{an}与{bn}的前n项之和为Sn,S`n,Sn/S`n=7n+2/n+3,求a7/b7
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n+2/n+3则a7b7的值为_.
- 等差数列An与Bn的前n项和分别是Sn和Tn,Sn/Tn=(7n+3)/(n+3),求A7/B7
- He doesn't suppose that you'll come in time,_______?A does he B,will you
- Tom()(be)ill last week,he()(be)much better now.用所给词的适当形式填空.
- Which month has 28 days?
猜你喜欢