正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
(1)证明:数列{√bn}成等差数列
(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式
(3)在(2)的前提下求{1/an}的通项公式
人气:251 ℃ 时间:2019-10-10 04:53:16
解答
a(n+1)=√[bn*b(n+1)]
2bn=an+an+1
2bn=√[bn*b(n-1)]+√[bn*b(n+1)]
2√bn=√b(n-1)+√b(n+1)
所以数列{√bn}为等差数列
2.
√b1=√2
(a2)^2=b1*b2
b2=(a2)^2/b1=4.5
√b2=√(9/2)
d=√(9/2)-√2
√bn=(n-1)(√(9/2)-√2)+√2
得bn=(n+1)^2/2
an=√bn*b(n+1)=(n+1)(n+2)/2
3.
1/an=1/[(n+1)(n+2)/2]=2/(n+1)(n+2)
推荐
- 正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
- 问道数学题.正数数列{an}和{bn}满足:对任意自然数n,an,bn,a(n+1)成等差数列,bn.a(n+1)成等比数列.
- 正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
- 已知等差数列an和等比数列bn,其中a1=b1,且对某一个自然数n,有a2n+1=b2n+1,是比较an+1和bn+1的大小
- 数列an为等差数列,an为正整数,其前N项和为Sn,数列bn为等比数列,且a1=3,b1=1,
- 回答几道名著题.
- 秋水 吾非至于子之门,则殆矣.的之和门的意思
- 在数轴上表示 负的根号3 与 负1 的对应点分别为A和B.则AB的中点C所表示的数是多少?
猜你喜欢