> 数学 >
设a∈R,函数f(x)=ax3-3x2
(Ⅰ)若x=2是函数y=f(x)的极值点,求a的值;
(Ⅱ)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.
人气:275 ℃ 时间:2019-08-20 08:18:12
解答
(Ⅰ)f'(x)=3ax2-6x=3x(ax-2).因为x=2是函数y=f(x)的极值点,所以f'(2)=0,即6(2a-2)=0,因此a=1.经验证,当a=1时,x=2是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3-3x2+3ax2-6x=ax2(x+3)-3x(...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版